3.710 \(\int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} (A+C \sec ^2(c+d x)) \, dx\)

Optimal. Leaf size=375 \[ \frac {2 \left (8 a^2 C+5 b^2 (7 A+5 C)\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{105 b^2 d}-\frac {2 a (a-b) \sqrt {a+b} \left (8 a^2 C+35 A b^2+19 b^2 C\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{105 b^4 d}-\frac {2 (a-b) \sqrt {a+b} \left (C \left (8 a^2+6 a b+25 b^2\right )+35 A b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{105 b^3 d}-\frac {8 a C \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{35 b^2 d}+\frac {2 C \tan (c+d x) \sec (c+d x) (a+b \sec (c+d x))^{3/2}}{7 b d} \]

[Out]

-2/105*a*(a-b)*(35*A*b^2+8*C*a^2+19*C*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b
))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^4/d-2/105*(a-b)*(35*A*b
^2+(8*a^2+6*a*b+25*b^2)*C)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^
(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/d-8/35*a*C*(a+b*sec(d*x+c))^(3/2)*tan
(d*x+c)/b^2/d+2/7*C*sec(d*x+c)*(a+b*sec(d*x+c))^(3/2)*tan(d*x+c)/b/d+2/105*(8*a^2*C+5*b^2*(7*A+5*C))*(a+b*sec(
d*x+c))^(1/2)*tan(d*x+c)/b^2/d

________________________________________________________________________________________

Rubi [A]  time = 0.77, antiderivative size = 375, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {4093, 4082, 4002, 4005, 3832, 4004} \[ \frac {2 \left (8 a^2 C+5 b^2 (7 A+5 C)\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{105 b^2 d}-\frac {2 (a-b) \sqrt {a+b} \left (C \left (8 a^2+6 a b+25 b^2\right )+35 A b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{105 b^3 d}-\frac {2 a (a-b) \sqrt {a+b} \left (8 a^2 C+35 A b^2+19 b^2 C\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{105 b^4 d}-\frac {8 a C \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{35 b^2 d}+\frac {2 C \tan (c+d x) \sec (c+d x) (a+b \sec (c+d x))^{3/2}}{7 b d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2),x]

[Out]

(-2*a*(a - b)*Sqrt[a + b]*(35*A*b^2 + 8*a^2*C + 19*b^2*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x
]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))]
)/(105*b^4*d) - (2*(a - b)*Sqrt[a + b]*(35*A*b^2 + (8*a^2 + 6*a*b + 25*b^2)*C)*Cot[c + d*x]*EllipticF[ArcSin[S
qrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec
[c + d*x]))/(a - b))])/(105*b^3*d) + (2*(8*a^2*C + 5*b^2*(7*A + 5*C))*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(
105*b^2*d) - (8*a*C*(a + b*Sec[c + d*x])^(3/2)*Tan[c + d*x])/(35*b^2*d) + (2*C*Sec[c + d*x]*(a + b*Sec[c + d*x
])^(3/2)*Tan[c + d*x])/(7*b*d)

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4002

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> -Simp[(B*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[1/(m + 1), Int[Csc[e + f*x
]*(a + b*Csc[e + f*x])^(m - 1)*Simp[b*B*m + a*A*(m + 1) + (a*B*m + A*b*(m + 1))*Csc[e + f*x], x], x], x] /; Fr
eeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4005

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[(Csc[e + f*x]*(1 +
 Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 4082

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_
.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(C*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(b*f*(m
+ 2)), x] + Dist[1/(b*(m + 2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*A*(m + 2) + b*C*(m + 1) + (b*B*
(m + 2) - a*C)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 4093

Int[csc[(e_.) + (f_.)*(x_)]^2*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))
^(m_), x_Symbol] :> -Simp[(C*Csc[e + f*x]*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(b*f*(m + 3)), x] + Dist[
1/(b*(m + 3)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[a*C + b*(C*(m + 2) + A*(m + 3))*Csc[e + f*x] - 2*a
*C*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx &=\frac {2 C \sec (c+d x) (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{7 b d}+\frac {2 \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (a C+\frac {1}{2} b (7 A+5 C) \sec (c+d x)-2 a C \sec ^2(c+d x)\right ) \, dx}{7 b}\\ &=-\frac {8 a C (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{35 b^2 d}+\frac {2 C \sec (c+d x) (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{7 b d}+\frac {4 \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (-\frac {1}{2} a b C+\frac {1}{4} \left (8 a^2 C+5 b^2 (7 A+5 C)\right ) \sec (c+d x)\right ) \, dx}{35 b^2}\\ &=\frac {2 \left (8 a^2 C+5 b^2 (7 A+5 C)\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{105 b^2 d}-\frac {8 a C (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{35 b^2 d}+\frac {2 C \sec (c+d x) (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{7 b d}+\frac {8 \int \frac {\sec (c+d x) \left (\frac {1}{8} b \left (35 A b^2+2 a^2 C+25 b^2 C\right )+\frac {1}{8} a \left (35 A b^2+8 a^2 C+19 b^2 C\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{105 b^2}\\ &=\frac {2 \left (8 a^2 C+5 b^2 (7 A+5 C)\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{105 b^2 d}-\frac {8 a C (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{35 b^2 d}+\frac {2 C \sec (c+d x) (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{7 b d}+\frac {\left (a \left (35 A b^2+8 a^2 C+19 b^2 C\right )\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{105 b^2}-\frac {\left ((a-b) \left (35 A b^2+\left (8 a^2+6 a b+25 b^2\right ) C\right )\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{105 b^2}\\ &=-\frac {2 a (a-b) \sqrt {a+b} \left (35 A b^2+8 a^2 C+19 b^2 C\right ) \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{105 b^4 d}-\frac {2 (a-b) \sqrt {a+b} \left (35 A b^2+\left (8 a^2+6 a b+25 b^2\right ) C\right ) \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{105 b^3 d}+\frac {2 \left (8 a^2 C+5 b^2 (7 A+5 C)\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{105 b^2 d}-\frac {8 a C (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{35 b^2 d}+\frac {2 C \sec (c+d x) (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{7 b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 19.65, size = 560, normalized size = 1.49 \[ \frac {\cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \left (\frac {4 \sec (c+d x) \left (-4 a^2 C \sin (c+d x)+35 A b^2 \sin (c+d x)+25 b^2 C \sin (c+d x)\right )}{105 b^2}+\frac {4 a \left (8 a^2 C+35 A b^2+19 b^2 C\right ) \sin (c+d x)}{105 b^3}+\frac {4 a C \tan (c+d x) \sec (c+d x)}{35 b}+\frac {4}{7} C \tan (c+d x) \sec ^2(c+d x)\right )}{d (A \cos (2 c+2 d x)+A+2 C)}+\frac {4 \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \left (-a \left (8 a^2 C+35 A b^2+19 b^2 C\right ) \cos (c+d x) \tan \left (\frac {1}{2} (c+d x)\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) (a \cos (c+d x)+b)+2 b (a+b) \left (C \left (8 a^2-6 a b+25 b^2\right )+35 A b^2\right ) \sqrt {\frac {\cos (c+d x)}{\cos (c+d x)+1}} \sqrt {\frac {a \cos (c+d x)+b}{(a+b) (\cos (c+d x)+1)}} F\left (\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )-2 a (a+b) \left (8 a^2 C+35 A b^2+19 b^2 C\right ) \sqrt {\frac {\cos (c+d x)}{\cos (c+d x)+1}} \sqrt {\frac {a \cos (c+d x)+b}{(a+b) (\cos (c+d x)+1)}} E\left (\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )\right )}{105 b^3 d \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} \sec ^{\frac {5}{2}}(c+d x) (a \cos (c+d x)+b) (A \cos (2 c+2 d x)+A+2 C)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sec[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2),x]

[Out]

(4*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2)*(-2*a*(a + b)*(35*A*b
^2 + 8*a^2*C + 19*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c +
 d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + 2*b*(a + b)*(35*A*b^2 + (8*a^2 - 6*a*b + 25*b^
2)*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[
ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - a*(35*A*b^2 + 8*a^2*C + 19*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x
])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(105*b^3*d*(b + a*Cos[c + d*x])*(A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[S
ec[(c + d*x)/2]^2]*Sec[c + d*x]^(5/2)) + (Cos[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2)*((4*a
*(35*A*b^2 + 8*a^2*C + 19*b^2*C)*Sin[c + d*x])/(105*b^3) + (4*Sec[c + d*x]*(35*A*b^2*Sin[c + d*x] - 4*a^2*C*Si
n[c + d*x] + 25*b^2*C*Sin[c + d*x]))/(105*b^2) + (4*a*C*Sec[c + d*x]*Tan[c + d*x])/(35*b) + (4*C*Sec[c + d*x]^
2*Tan[c + d*x])/7))/(d*(A + 2*C + A*Cos[2*c + 2*d*x]))

________________________________________________________________________________________

fricas [F]  time = 0.48, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (C \sec \left (d x + c\right )^{4} + A \sec \left (d x + c\right )^{2}\right )} \sqrt {b \sec \left (d x + c\right ) + a}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^4 + A*sec(d*x + c)^2)*sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^2, x)

________________________________________________________________________________________

maple [B]  time = 2.30, size = 2783, normalized size = 7.42 \[ \text {Expression too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x)

[Out]

-2/105/d*(1+cos(d*x+c))^2*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))^2*(35*A*cos(d*x+c)^4*(cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-
b)/(a+b))^(1/2))*sin(d*x+c)*b^4+25*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d
*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*b^4-8*C*cos(d*x+c)^4*
(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(
d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^4+35*A*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c
))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*b^4+25*C*c
os(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(
d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*b^4-8*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+
a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)
*a^4-35*A*cos(d*x+c)^2*b^4+35*A*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c)
)/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^3+35*A*cos(d*x+c)^4*a*
b^3-70*A*cos(d*x+c)^3*a*b^3+35*A*cos(d*x+c)^4*b^4-15*C*b^4+8*C*cos(d*x+c)^4*a^3*b-20*C*cos(d*x+c)^4*a^2*b^2+19
*C*cos(d*x+c)^4*a*b^3-4*C*cos(d*x+c)^3*a^3*b-26*C*cos(d*x+c)^3*a*b^3+C*cos(d*x+c)^2*a^2*b^2-18*C*cos(d*x+c)*a*
b^3+35*A*cos(d*x+c)^5*a^2*b^2+35*A*cos(d*x+c)^5*a*b^3-4*C*cos(d*x+c)^5*a^3*b+19*C*cos(d*x+c)^5*a^2*b^2+25*C*co
s(d*x+c)^5*a*b^3-35*A*cos(d*x+c)^4*a^2*b^2+25*C*cos(d*x+c)^4*b^4-10*C*cos(d*x+c)^2*b^4+8*C*cos(d*x+c)^5*a^4-8*
C*cos(d*x+c)^4*a^4-35*A*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))
^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b^2-35*A*cos(d*x+c)^4*(cos(d*x
+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(
(a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^3+8*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+c
os(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^3*b+2*C*cos(d*x
+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c)
)/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b^2+19*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a
*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*
a*b^3-8*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*Ellipti
cE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^3*b-19*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c
)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/
2))*sin(d*x+c)*a^2*b^2-19*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a
+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^3+35*A*cos(d*x+c)^3*(cos(d
*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c)
,((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^3-35*A*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(
1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b^2-35*A*c
os(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(
d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^3+8*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((
b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+
c)*a^3*b+2*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*Elli
pticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b^2+19*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(
d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b)
)^(1/2))*sin(d*x+c)*a*b^3-8*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/
(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^3*b-19*C*cos(d*x+c)^3*(cos
(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+
c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b^2-19*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c
))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^3)/(b+
a*cos(d*x+c))/cos(d*x+c)^3/sin(d*x+c)^5/b^3

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}}{{\cos \left (c+d\,x\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(1/2))/cos(c + d*x)^2,x)

[Out]

int(((A + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(1/2))/cos(c + d*x)^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sqrt {a + b \sec {\left (c + d x \right )}} \sec ^{2}{\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(A+C*sec(d*x+c)**2)*(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)*sqrt(a + b*sec(c + d*x))*sec(c + d*x)**2, x)

________________________________________________________________________________________